81 research outputs found

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies drive innovations in forest resource assessments and monitoring at varying scales. Data acquired with airborne and spaceborne platforms provide us with higher spatial resolution, more frequent coverage and increased spectral information. Recent developments in ground-based sensors have advanced three dimensional (3D) measurements, low-cost permanent systems and community-based monitoring of forests. The REDD+ mechanism has moved the remote sensing community in advancing and developing forest geospatial products which can be used by countries for the international reporting and national forest monitoring. However, there still is an urgent need to better understand the options and limitations of remote and close-range sensing techniques in the field of degradation and forest change assessment. This Special Issue contains 12 studies that provided insight into new advances in the field of remote sensing for forest management and REDD+. This includes developments into algorithm development using satellite data; synthetic aperture radar (SAR); airborne and terrestrial LiDAR; as well as forest reference emissions level (FREL) frameworks

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index

    Get PDF
    In situ leaf area index (LAI) measurements are essential to validate widely-used large-area or global LAI products derived, indirectly, from satellite observations. Here, we compare three common and emerging ground-based sensors for rapid LAI characterisation of large areas, namely digital hemispherical photography (DHP), two versions of a widely-used commercial LAI sensor (LiCOR LAI-2000 and 2200), and terrestrial laser scanning (TLS). The comparison is conducted during leaf-on and leaf-off conditions at an unprecedented sample size in a deciduous woodland canopy. The deviation between estimates of these three ground-based instruments yields differences greater than the 5% threshold goal set by the World Meteorological Organization. The variance at sample level is reduced when aggregated to plot scale (1 ha) or site scale (6 ha). TLS shows the lowest relative standard deviation in both leaf-on (11.78%) and leaf-off (13.02%) conditions. Whereas the relative standard deviation of effective plant area index (ePAI) derived from DHP relates closely to us in leaf-on conditions, it is as large as 28.14-29.74% for effective wood area index (eWAI) values in leaf-off conditions depending on the thresholding technique that was used. ePAI values of TLS and LAI-2x00 agree best in leaf-on conditions with a concordance correlation coefficient (CCC) of 0.796. In leaf-off conditions, eWAI values derived from DHP with Ridler and Calvard thresholding agrees best with TLS. Sample size analysis using Monte Carlo bootstrapping shows that TLS requires the fewest samples to achieve a precision better than 5% for the mean +/- standard deviation. We therefore support earlier studies that suggest that TLS measurements are preferential to measurements from instruments that are dependent on specific illumination conditions. A key issue with validation of indirect estimates of LAI is that the true values are not known. Since we cannot know the true values of LAI, we cannot quantify the accuracy of the measurements. Our radiative transfer simulations show that ePAI estimates are, on average, 27% higher than eLAI estimates. Linear regression indicated a linear relationship between eLAI and ePAI-eWAI (R-2 = 0.87), with an intercept of 0.552 and suggests that caution is required when using LAI estimates

    Tracking Climate Effects on Plant-Pollinator Interaction Phenology with Satellites and Honey Bee Hives

    Get PDF
    Background/Question/Methods: The complexity of plant-pollinator interactions, the large number of species involved, and the lack of species response functions present challenges to understanding how these critical interactions may be impacted by climate and land cover change on large scales. Given the importance of this interaction for terrestrial ecosystems, it is desirable to develop new approaches. We monitor the daily weight change of honey bee (Apis mellifera) colonies to record the phenology of the Honey Bee Nectar Flow (HBNF) in a volunteer network (honeybeenet.gsfc.nasa.gov). The records document the successful interaction of a generalist pollinator with a variety of plant resources. We extract useful HBNF phenology metrics for three seasons. Sites currently exist in 35 states/provinces in North America, with a concentration in the Mid-Atlantic region. HBNF metrics are compared to standard phenology metrics derived from remotely sensed vegetation indices from NASA's MODIS sensor and published results from NOAA's A VHRR. At any given time the percentage of plants producing nectar is usually a sma11 fraction of the total satellite sensor signal. We are interested in determining how well the 'bulk' satellite vegetation parameters relate to the phenology of the HBNF, and how it varies spatially on landscape to continental scales. Results/Conclusions: We found the median and peak seasonal HBNF dates to be robust, with variation between replicate scale hives of only a few days. We developed quality assessment protocols to identify abnormal colony artifacts. Temporally, the peak and median of the HBNF in the Mid-Atlantic show a significant advance of 0.58 d/y beginning about 1970, very similar to that observed by the A VHRR since 1982 (0.57 d/y). Spatially, the HBNF metrics are highly correlated with elevation and winter minimum temperature distribution, and exhibit significant but regionally coherent inter-annual variation. The relationship between median of the spring HBNF with the "Green-up" metric from the 500 meter MODIS NDVI phenology product, for sites throughout the Eastern US 2000-2009, is well described by a single linear fit (r(exp 2) = 0.72). We conclude.that for the tree-dominated areas of the Eastern US at least the spring HBNF can be tracked very well by MODIS phenology. Analysis of other regions and seasons is presently underway but with more limited data. Spatial patterns in the eastern US and management implications will be presented and discussed

    Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling

    Get PDF
    Forest biophysical variables derived from remote sensing observations are vital for climate research. The combination of structurally and radiometrically accurate 3D virtual forests with radiative transfer (RT) models creates a powerful tool to facilitate the calibration and validation of remote sensing data and derived biophysical products by helping us understand the assumptions made in data processing algorithms. We present a workflow that uses highly detailed 3D terrestrial laser scanning (TLS) data to generate virtual forests for RT model simulations. Our approach to forest stand reconstruction from a co-registered point cloud is unique as it models each tree individually. Our approach follows three steps: (1) tree segmentation; (2) tree structure modelling and (3) leaf addition. To demonstrate this approach, we present the measurement and construction of a one hectare model of the deciduous forest in Wytham Woods (Oxford, UK). The model contains 559 individual trees. We matched the TLS data with traditional census data to determine the species of each individual tree and allocate species-specific radiometric properties. Our modelling framework is generic, highly transferable and adjustable to data collected with other TLS instruments and different ecosystems. The Wytham Woods virtual forest is made publicly available through an online repository

    CEOS WGCV Land Product Validation (LPV) Sub-Group: Current and Potential Roles in Future Decadal Survey Missions

    Get PDF
    The goals and objectives of the sub group are: To foster and coordinate quantitative validation of higher level global land products derive d from remotely sensed data, in a traceable way, and to relay results so they are relevant to users. and to increase the quality and effi ciency of global satellite product validation by developing and promo ting international standards and protocols for: (1) Field sampling (2) Scaling techniques (3) Accuracy reporting (4) Data / information exchange also to provide feedback to international structures (GEOSS ) for: (1) Requirements on product accuracy and quality assurance (QA 4EO) (2) Terrestrial ECV measurement standards (3) Definitions for f uture mission

    Ten priority science gaps in assessing climate data record quality

    Get PDF
    Decision makers need accessible robust evidence to introduce new policies in an effort to mitigate and adapt to climate change. There is an increasing amount of environmental information available to policy makers concerning observations and trends relating to the climate. However, this data is hosted across a multitude of websites often with inconsistent metadata and sparse information relating to the quality, accuracy and validity of the data. Subsequently, the task of comparing datasets to decide which is the most appropriate for a certain purpose is very complex and often infeasible. In support of the European Union’s Copernicus Climate Change Service (C3S) mission to provide authoritative information about the past, present and future climate in Europe and the rest of the world, each dataset to be provided through this service must undergo an evaluation of its climate relevance and scientific quality to help with data comparisons. This paper presents the framework for Evaluation and Quality Control (EQC) of climate data products derived from satellite and in situ observations to be catalogued within the C3S Climate Data Store (CDS). The EQC framework will be implemented by C3S as part of their operational quality assurance programme. It builds on past and present international investment in Quality Assurance for Earth Observation initiatives, extensive user requirements gathering exercises, as well as a broad evaluation of over 250 data products and a more in-depth evaluation of a selection of 24 individual data products derived from satellite and in situ observations across the land, ocean and atmosphere Essential Climate Variable (ECV) domains. A prototype Content Management System (CMS) to facilitate the process of collating, evaluating and presenting the quality aspects and status of each data product to data users is also described. The development of the EQC framework has highlighted cross-domain as well as ECV specific science knowledge gaps in relation to addressing the quality of climate data sets derived from satellite and in situ observations. We discuss 10 common priority science knowledge gaps that will require further research investment to ensure all quality aspects of climate data sets can be ascertained and provide users with the range of information necessary to confidently select relevant products for their specific application

    Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)

    Get PDF
    Terrestrial biosphere models (TBMs) are invaluable tools for studying plant-atmosphere interactions at multiple spatial and temporal scales, as well as how global change impacts ecosystems. Yet, TBM projections suffer from large uncertainties that limit their usefulness. Forest structure drives a significant part of TBM uncertainty as it regulates key processes such as the transfer of carbon, energy, and water between the land and the atmosphere, but it remains challenging to observe and reliably represent. The poor representation of forest structure in TBMs might actually result in simulations that reproduce observed land fluxes but fail to capture carbon pools, forest composition, and demography. Recent advances in terrestrial laser scanning (TLS) offer new opportunities to capture the three-dimensional structure of the ecosystem and to transfer this information to TBMs in order to increase their accuracy. In this study, we quantified the impacts of prescribing initial conditions (tree size distribution), constraining key model parameters with observations, as well as imposing structural observations of individual trees (namely tree height, leaf area, woody biomass, and crown area) derived from TLS on the state-of-the-art Ecosystem Demography model (ED2.2) of a temperate forest site (Wytham Woods, UK). We assessed the relative contributions of initial conditions, model structure, and parameters to the overall output uncertainty by running ensemble simulations with multiple model configurations. We show that forest demography and ecosystem functions as modelled by ED2.2 are sensitive to the imposed initial state, the model parameters, and the choice of key model processes. In particular, we show that: Parameter uncertainty drove the overall model uncertainty, with a mean contribution of 63 % to the overall variance of simulated gross primary production. Model uncertainty in the gross primary production was reduced fourfold when both TLS and trait data were integrated into the model configuration. Land fluxes and ecosystem composition could be simultaneously and accurately simulated with physically realistic parameters when appropriate constraints were applied to critical parameters and processes. We conclude that integrating TLS data can inform TBMs of the most adequate model structure, constrain critical parameters, and prescribe representative initial conditions. Our study also confirms the need for simultaneous observations of plant traits, structure, and state variables if we seek to improve the robustness of TBMs and reduce their overall uncertainties.Peer reviewe

    Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    Get PDF
    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest
    • …
    corecore